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Energy spectrum of a weak coupling polaron is considered in a disk-shaped quantum dot. An
analytical expression for the polaron energy correction to the ground and the first excited state
was calculated using a modified perturbation theory. Anticrossing of the polaron energy
levels in the dependence on the quantum dot radius was obtained.

1. INTRODUCTION

Investigation of electron spectrum in quantum dots has been attracted much attention in
the last decade as it has been technologically possible to produce well characterized quasi-
zero-dimensional structures. Most of these structures are made of polar materials. Therefore,
the polaron phenomena can strongly influence the electron spectrum. There has been a great
interest of the polaron phenomena in quantum - well, quantum wire and quantum dot
structures. It 1s known that the polaron effects are enhanced when going from 2D to 1D and
then to OD system. The normalized polaron energy shift of the ground state AE¢/othwg,
where a is the Frohlich coupling constant and hwy o is the energy of longitudinal optical (LO)
phonon, equals to —1 and -7/2 in he case 0f 3D and 2D system respectively. In one-dimen-
sional case AE(/ahwio is proportional to InR when the radius of the cylindrical quantum
wires R—0 [1]. The most significant polaron effects are realized in quantum dots. Applying
the Feynman variational principle the basic polaron parameters were obtained in the case of
spherical quantum dot and it was shown that AEyahmyo depends on the quantum dot radius
more strongly than in 1D case [1].

On the other hand, one of the interesting experimental facts is absence of the expected
LO-phonon bottleneck effect of photoexcited electrons in quantum dots. There is a number of
papers proposed various reasons why the expected bottleneck effect may be bypassed [2-4].
In particular, in the works [5,6] the energy relaxation of the excited electrons in quantum dots
was discussed in connection with polaron effects. So, it is interesting to investigate polaron
spectrum in quantum dots in the case of the resonance where the distance between size-
quantized levels equals to the LO-phonon energy.

Another interesting fact is that the electron- LO-phonon interaction leads to
anticrossing of the energy levels. Larsen was the first to point out the level repulsion at
®.=0L0, where ®, is the cyclotron frequency, in bulk crystals in the presence of a magnetic
field [7]. The anticrossing of energy levels was observed in absorption spectrum of quantum
dots InAs/GaAs in magnetic field [8]. Appearance of the anticrossing in the dependence of
polaron levels on the quantum dot radius theoretically was derived on the base of two-levels
system [6]. More precisely, the disk-shaped InAs/GaAs quantum dot in the presence of a
magnetic field by using the Davydov’s canonical transformation was considered theoretically
in the paper [9].

The goal of the present paper is to investigate polaron spectrum in the case of disk-
shaped quantum dot. We shall use a modified perturbation theory taking into account the
interaction between E;® and B+ horo, where Eo® and E,©® are the ground and the first
excited energy level of the confined electron respectively. In spite of the fact that due to the
electronic confinement in the low-dimensional structures, the strong-coupling regime can be
realized even at the small value of the electron-phonon interaction constant o, we use the
perturbation theory. As it will be shown below the weak-coupling regime still may be realized
for small value o and quantum dot’s size usually considered in experiments.
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2. POLARON ENERGY

In the present paper we consider a disk-shaped quantum dot, 1.e. a cylindrical quantum
dot with the radius essentially exceeding its height. The same situation usually is realized in
experiments. Usually the diameter of the disk exceeds its height by the order. Besides, we use
the oscillator model of the potential confining electron’s movement along the cylindrical axis
z with the frequency o, and in the plane of the disk with the frequency ®. According to the
considered shape of the disk it is assumed that o,>>w. It is considered that the levels
connected with confinement along z are situated too over the ground state and their influence
can be neglected. It is suggested that the coupling constant of a polar crystal in a quantum dot
is too little (for GaAs a=0.07). In this connection we use the perturbation theory for polaron
energy shift. The suggested model of the quantum dot is related to the following Schrodinger
equation for electron non-interacting with phonons:

(6% 8p* + (1/p) 8/ 0p + (1/p) 8 / 0@ )y + &%y /02" +
+ (2moEY/h% — me*w?p?/h’ — me’e,’Z/h%) ¢y =0, (1)

where my is the electron’s effective mass in the quantum dot, p, ¢, z are the cylindrical
coordinates. The solution of the equation (1) is well known:

Wom = (aazmanm/nm)(ap)i”‘ | L(,,_1m|)]"‘|(azp2) exp(-a’p?/2- a, 2 /2+imep), (2)
where L{nv]m|)|"‘|(a2p2) are the associated Laguerre polynomials, a’=mpw/h, a,”= moeo /h,

amf:(n- ] m)l/(nt|m|),n=0,12,..., m=0,+2,+4,..  tnifniseven, m==%1 43, . +nifn
is odd and m=0 for n=0. The energy spectrum 1s:

E.O=hw/2+ ho(n+1). (3)

The electrons are assumed to be coupled to dispersiveness LO-phonons of the bulk crystal.
The potential yielded by one LO-phonon is:

9= (Afq) expliqupoosei), @

where A=ihwg(4nalyy V)", q is the phonon wave vector, q, and q, are the components of the

phonon wave vector laying in the plane of the disk and along z axes correspondingly, q=(q.*+

)", yo’=2mywo/h, hay is the energy of LO-phonon at g=0, V is the quantum dot’s volume.
The matrix element corresponding to the emission of the LO-phonon is

I\/Lxm—bn'nx’: J‘.tpnme (Pq* LP*n‘m’dvy (5)
where e ts the electron charge. Using the expressions (2) and (5) we obtain

Mnm—)n’m’: (2Aanman'm’('i)m-m7/q) exp('QZ2/4azz) Inm——m’m'(ql/?‘a)y (6)

where

o
Inm—)n’m‘(y):.[ x } m | + ]m' |HL(n. | o | Vo | m | (X2) L(n’— ' . |)/2 | m’ | (Xz)eXp(-Xz)mem(2X_V)
0
Jm'-m(2Xy) is the Bessel function.
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It is assumed that the difference between conductivity bands of the material of quantum
dot and surroundings is quite large and sufficient number of quantum levels exists inside the
quantum well. So, while calculating the polaron energy, we shall take into account the
electron’s transitions to the all levels. Far from the resonance the polaron correction to the
energy in the second order of the perturbation theory is defined as follows:

AE= X M umoswtar| /(B Ev®-hao) (7
mn’,m’.q
We shall substitute (3) and (6) into (7) and replace the summation over q with

integration. For simplicity we shall consider the limit ®,, a,—> related to the case of zero
height cylinder. According to this limit the integral over q. is equal to;

fexpl-q."72a,"Y(q1*+q.")dq, =n/q.
As a result we shall obtain the following expression of the polaron energy shift

normmalized by athaq:

AE,/ ahoy=-8(T 1'2)”2 p 7 Wy an-m-zlmn-m-/[(n’-n) I+1] (8)

m, n’,m’,q

J-—-n'.; ﬂl H‘n"des
where I'=w/@y . From the kind of potential of the oscillator model it is obvious that T is
proportional to 1/R, where R is the quantum dot radius. The case of I'—>c0 corresponds to the
ultraquantum limit. On the other hand, the limit I'>0 corresponds to the two-dimensional

case of a plane. The polaron energy shift of the ground state AE,/ aho, calculated as a
function of the parameter I is plotied in Fig.1.
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Fig 1 Dependence of the polaron ground state shift AEy/ ohay on T

The quantity AEy/ ah@y trends to the well known value -7n/2 for two-dimensional case in
the limit I'—0. In the case of I'-> the quantity of AEy/ ch@, diverges proportionally to I'"%,
It 1s known that the divergence is taken place also in the case of quantum wire if the wire
radius tends to zero [1]. However, in one-dimensional case there is more weak logarithmic
divergence. Now we shall calculate the polaron energy shift of the level E;? for any value of
I' including the resonance region. As it is seen from the expression (8) for n=1, the term
comresponding to n’=0, diverges in the limit '>1. The formula (8) is not applicable near the
resonance T=1. In order to calculate the energy shift of the level E,” in this area we shall
exclude from (8) the term cormresponding to the transition from the state n=1 to n’=0 and shall
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take into account this contribution using the perturbation theory applicable in the case of
degeneracy of two levels E;” and Eo®+hag. We shall consider the system consisted from an
electron, which has the state n=0, m=0 of the level Eo™® and two degenerate states n=1, m=+1
of the level E,¥ | and a phonon which will have the occupation number ng=0 if the electron is
on the level Eo® and ng=1 if the electron is on the level E,”. So, the united non-interacting
electron-phonon system may exist on the level E,® with two degenerate states jn=1 m=+1,
n,=0 > and on the level E{®+hw, with the state [n=1,m=0, n;=1 > Then including the
Frohlich coupling one can easy obtain the following expression for the energy of the two-
level system:

E=( B2+ E¢+hoe)/24[( E;+ Eo™+haeg) 74+ Vo], (9)

where Ee®= ha, E;®=2 ho, [Voi|*= Z(Mos-s1.1[+Moss1.1[).
Q

From (9) we can define AE;=E- E;”? in the following form:
AE,/ ahog=(1-T")/20+[(1-T)/4HVo;|/(hwe)*]" /e (10)

where [Voi|¥/(hoe)*=16(I/2)"?cl} 150,0. The sign plus corresponds to the region I>1, the sign
minus to the region I'<1. The contribution into the energy shift A( Esthog)=E- Eo™-hoy
corresponding to the same transition is defined by the formula (11), but with the sign plus in
the region I'<1 and with the sign minus in the region I'>1

A( Egthog)/ ahae=-(1-I')/2ct[(1-T)/4H{Va[/(hoe)*] *a (11)

The value of the integral J; 1500 18 0.039. The total shift AE,/ ahe, and A(Eythey) ahoy is
calculated excluding from (8) the term related to the transition n=1,m—+1—-n=0,m=0 and
adding the contribution defined by (10) and (11) respectively. The shifts AE,/ ahay and
A(Epthag)/ ahoy as the functions of T are plotted in Fig.2 and Fig.3 respectively for a~0.07.
The picture of the levels Ey/ ahoy and (Ey+hay)/ ohay is represent in Fig4, where E,®
hae=2I"and (E¢®+hag)/ heo=I'+1 are represented by dashed lines. In the resonance area the
energy levels correspond to the wave function represented as a superposition of the states
in=1,m=t1, n;=0 > and |n=1,m=0, n=1 >

Jr
Fig.2 Dependence of the polaron energy shift AE;/ ahag on .
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Fig.3 Dependence of the A(E¢+ hog )/ ahagonT.

I
Fig.4 Anticrossing of the levels Ei/ haog and (Eg+ hag )/ hoo on I. The levels E;“/hay
and (Eo+ hoy )/ hoy are plotted by dashed lines.

As it is shown in the Fig.4 the polaron spectrum (solid line) is situated sufficiently close to
the unperturbed electron spectrum (dashed lines). So, use of the perturbation theory for little
value of a in the considered range of the parameter I is quite correct.

CONCLUSION

Using the perturbation theory the polaron energy shift was obtained. The polaron shift of the
ground state tends to the well known value -7t/2 for two-dimensional system in the case of
['—0. In the limit of "> the polaron shift diverges more sharp than in the case of quantum
wire when its radius tends to zero.

Using the modified perturbation theory the anticrossing of the polaron levels E; and Eqthaeg
was obtained near the resonance region.

Far from the resonance the level Eq+hag has not the particular physical meaning, however,
the states corresponding to this level in the resonance region may be realized in experiments
on light absorption. Apart from the allowed transition Eq—E,, the transition Eq—> Egt+ hayg
may also take place because the wave functions of these levels are mixed in the anticrossing
region.
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ASAGI OLCULU SISTEMLORDD
POLYARONUN ENERJi SPEKTRI

OLOKBOROV 0.Z., HUSEYNOV N.M.

Disk formali kvant ndqtesinde zeif olageli polyaronun enerji  spektrino  baxilib.
Geniglendirilmis heyecanlanma nozeriyyesindan istifade edilerak, pelyaronun asas ve birinci
enerji sovivyaleri {giin analitik ifade alinmigdir. Enerji soviyyolorinin qarsiliqh dof olunma
qlymetinin kvant néqtasinin radiusundan aslihg: taptimigdir.

DHEPT ETUYECKHN CHEKTP IMOJIAPOHA
B HN3KOPAZMEPHBLIX KBAHTOBBIX CUCTEMAX

AJIEKITEPOB 0.3., TYCEHHOB H.M.

PaccmaTpuBaeTcs aHepreTnyeckuii cnekTp ¢i1ado CBA3AHHOIO MOJPOHA B KBAHTOBOM TOUKE B
dopme ancka. Ucnonssys MomndULIUPOBAHHYIO TEOPUIO BO3MYLISHUI, MOJyYeHbl aHATHTH-
HECKHE BRIPAKEHUS K MOMNpaBkaM OCHOBHOrO M 1epPBOro BO3DYXKAEHHOTO COCTOAHUS MOJISPO-
Ha, [lonyuena BenUUMHA AHTH-KPOCCUHTA SHEPreTHUYECKHX YPOBHEH B 3aBHCUMOCTH OT
pagnyca KBaHTOBOH TOYKM.





